home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Visual Cafe 3
/
Visual Cafe 3.ISO
/
Vcafe
/
Main.bin
/
Utility.java
< prev
next >
Wrap
Text File
|
1998-09-22
|
16KB
|
454 lines
/*
* @(#)Utility.java 1.5 98/01/12
*
* (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
* (C) Copyright IBM Corp. 1996, 1997 - All Rights Reserved
*
* Portions copyright (c) 1996 Sun Microsystems, Inc. All Rights Reserved.
*
* The original version of this source code and documentation is copyrighted
* and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
* materials are provided under terms of a License Agreement between Taligent
* and Sun. This technology is protected by multiple US and International
* patents. This notice and attribution to Taligent may not be removed.
* Taligent is a registered trademark of Taligent, Inc.
*
* Permission to use, copy, modify, and distribute this software
* and its documentation for NON-COMMERCIAL purposes and without
* fee is hereby granted provided that this copyright notice
* appears in all copies. Please refer to the file "copyright.html"
* for further important copyright and licensing information.
*
* SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF
* THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR
* ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
* DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
*
*/
package java.text;
final class Utility {
/**
* Convenience utility to compare two Object[]s.
* Ought to be in System
*/
final static boolean arrayEquals(Object[] source, Object target) {
if (source == null) return (target == null);
if (!(target instanceof Object[])) return false;
Object[] targ = (Object[]) target;
return (source.length == targ.length
&& arrayRegionMatches(source, 0, targ, 0, source.length));
}
/**
* Convenience utility to compare two int[]s
* Ought to be in System
*/
final static boolean arrayEquals(int[] source, Object target) {
if (source == null) return (target == null);
if (!(target instanceof int[])) return false;
int[] targ = (int[]) target;
return (source.length == targ.length
&& arrayRegionMatches(source, 0, targ, 0, source.length));
}
/**
* Convenience utility to compare two double[]s
* Ought to be in System
*/
final static boolean arrayEquals(double[] source, Object target) {
if (source == null) return (target == null);
if (!(target instanceof double[])) return false;
double[] targ = (double[]) target;
return (source.length == targ.length
&& arrayRegionMatches(source, 0, targ, 0, source.length));
}
/**
* Convenience utility to compare two Object[]s
* Ought to be in System
*/
final static boolean arrayEquals(Object source, Object target) {
if (source == null) return (target == null);
// for some reason, the correct arrayEquals is not being called
// so do it by hand for now.
if (source instanceof Object[])
return(arrayEquals((Object[]) source,target));
if (source instanceof int[])
return(arrayEquals((int[]) source,target));
if (source instanceof double[])
return(arrayEquals((int[]) source,target));
return source.equals(target);
}
/**
* Convenience utility to compare two Object[]s
* Ought to be in System.
* @param len the length to compare.
* The start indices and start+len must be valid.
*/
final static boolean arrayRegionMatches(Object[] source, int sourceStart,
Object[] target, int targetStart,
int len)
{
int sourceEnd = sourceStart + len;
int delta = targetStart - sourceStart;
for (int i = sourceStart; i < sourceEnd; i++) {
if (!arrayEquals(source[i],target[i + delta]))
return false;
}
return true;
}
/**
* Convenience utility to compare two int[]s.
* @param len the length to compare.
* The start indices and start+len must be valid.
* Ought to be in System
*/
final static boolean arrayRegionMatches(int[] source, int sourceStart,
int[] target, int targetStart,
int len)
{
int sourceEnd = sourceStart + len;
int delta = targetStart - sourceStart;
for (int i = sourceStart; i < sourceEnd; i++) {
if (source[i] != target[i + delta])
return false;
}
return true;
}
/**
* Convenience utility to compare two arrays of doubles.
* @param len the length to compare.
* The start indices and start+len must be valid.
* Ought to be in System
*/
final static boolean arrayRegionMatches(double[] source, int sourceStart,
double[] target, int targetStart,
int len)
{
int sourceEnd = sourceStart + len;
int delta = targetStart - sourceStart;
for (int i = sourceStart; i < sourceEnd; i++) {
if (source[i] != target[i + delta])
return false;
}
return true;
}
/**
* Convenience utility. Does null checks on objects, then calls equals.
*/
final static boolean objectEquals(Object source, Object target) {
if (source == null)
return (target == null);
else
return source.equals(target);
}
/**
* The ESCAPE character is used during run-length encoding. It signals
* a run of identical chars.
*/
static final char ESCAPE = '\uA5A5';
/**
* The ESCAPE_BYTE character is used during run-length encoding. It signals
* a run of identical bytes.
*/
static final byte ESCAPE_BYTE = (byte)0xA5;
/**
* Construct a string representing a short array. Use run-length encoding.
* A character represents itself, unless it is the ESCAPE character. Then
* the following notations are possible:
* ESCAPE ESCAPE ESCAPE literal
* ESCAPE n c n instances of character c
* Since an encoded run occupies 3 characters, we only encode runs of 4 or
* more characters. Thus we have n > 0 and n != ESCAPE and n <= 0xFFFF.
* If we encounter a run where n == ESCAPE, we represent this as:
* c ESCAPE n-1 c
* The ESCAPE value is chosen so as not to collide with commonly
* seen values.
*/
static final String arrayToRLEString(short[] a) {
StringBuffer buffer = new StringBuffer();
// for (int i=0; i<a.length; ++i) buffer.append((char) a[i]);
buffer.append((char) (a.length >> 16));
buffer.append((char) a.length);
short runValue = a[0];
int runLength = 1;
for (int i=1; i<a.length; ++i) {
short s = a[i];
if (s == runValue && runLength < 0xFFFF) ++runLength;
else {
encodeRun(buffer, runValue, runLength);
runValue = s;
runLength = 1;
}
}
encodeRun(buffer, runValue, runLength);
return buffer.toString();
}
/**
* Construct a string representing a byte array. Use run-length encoding.
* Two bytes are packed into a single char, with a single extra zero byte at
* the end if needed. A byte represents itself, unless it is the
* ESCAPE_BYTE. Then the following notations are possible:
* ESCAPE_BYTE ESCAPE_BYTE ESCAPE_BYTE literal
* ESCAPE_BYTE n b n instances of byte b
* Since an encoded run occupies 3 bytes, we only encode runs of 4 or
* more bytes. Thus we have n > 0 and n != ESCAPE_BYTE and n <= 0xFF.
* If we encounter a run where n == ESCAPE_BYTE, we represent this as:
* b ESCAPE_BYTE n-1 b
* The ESCAPE_BYTE value is chosen so as not to collide with commonly
* seen values.
*/
static final String arrayToRLEString(byte[] a) {
StringBuffer buffer = new StringBuffer();
buffer.append((char) (a.length >> 16));
buffer.append((char) a.length);
byte runValue = a[0];
int runLength = 1;
byte[] state = new byte[2];
for (int i=1; i<a.length; ++i) {
byte b = a[i];
if (b == runValue && runLength < 0xFF) ++runLength;
else {
encodeRun(buffer, runValue, runLength, state);
runValue = b;
runLength = 1;
}
}
encodeRun(buffer, runValue, runLength, state);
// We must save the final byte, if there is one, by padding
// an extra zero.
if (state[0] != 0) appendEncodedByte(buffer, (byte)0, state);
return buffer.toString();
}
/**
* Encode a run, possibly a degenerate run (of < 4 values).
* @param length The length of the run; must be > 0 && <= 0xFFFF.
*/
private static final void encodeRun(StringBuffer buffer, short value, int length) {
if (length < 4) {
for (int j=0; j<length; ++j) {
if (value == (int) ESCAPE) buffer.append(ESCAPE);
buffer.append((char) value);
}
}
else {
if (length == (int) ESCAPE) {
if (value == (int) ESCAPE) buffer.append(ESCAPE);
buffer.append((char) value);
--length;
}
buffer.append(ESCAPE);
buffer.append((char) length);
buffer.append((char) value); // Don't need to escape this value
}
}
/**
* Encode a run, possibly a degenerate run (of < 4 values).
* @param length The length of the run; must be > 0 && <= 0xFF.
*/
private static final void encodeRun(StringBuffer buffer, byte value, int length,
byte[] state) {
if (length < 4) {
for (int j=0; j<length; ++j) {
if (value == ESCAPE_BYTE) appendEncodedByte(buffer, ESCAPE_BYTE, state);
appendEncodedByte(buffer, value, state);
}
}
else {
if (length == ESCAPE_BYTE) {
if (value == ESCAPE_BYTE) appendEncodedByte(buffer, ESCAPE_BYTE, state);
appendEncodedByte(buffer, value, state);
--length;
}
appendEncodedByte(buffer, ESCAPE_BYTE, state);
appendEncodedByte(buffer, (byte)length, state);
appendEncodedByte(buffer, value, state); // Don't need to escape this value
}
}
/**
* Append a byte to the given StringBuffer, packing two bytes into each
* character. The state parameter maintains intermediary data between
* calls.
* @param state A two-element array, with state[0] == 0 if this is the
* first byte of a pair, or state[0] != 0 if this is the second byte
* of a pair, in which case state[1] is the first byte.
*/
private static final void appendEncodedByte(StringBuffer buffer, byte value,
byte[] state) {
if (state[0] != 0) {
char c = (char) ((state[1] << 8) | (((int) value) & 0xFF));
buffer.append(c);
state[0] = 0;
}
else {
state[0] = 1;
state[1] = value;
}
}
/**
* Construct an array of shorts from a run-length encoded string.
*/
static final short[] RLEStringToShortArray(String s) {
int length = (((int) s.charAt(0)) << 16) | ((int) s.charAt(1));
short[] array = new short[length];
int ai = 0;
for (int i=2; i<s.length(); ++i) {
char c = s.charAt(i);
if (c == ESCAPE) {
c = s.charAt(++i);
if (c == ESCAPE) array[ai++] = (short) c;
else {
int runLength = (int) c;
short runValue = (short) s.charAt(++i);
for (int j=0; j<runLength; ++j) array[ai++] = runValue;
}
}
else {
array[ai++] = (short) c;
}
}
if (ai != length)
throw new InternalError("Bad run-length encoded short array");
return array;
}
/**
* Construct an array of bytes from a run-length encoded string.
*/
static final byte[] RLEStringToByteArray(String s) {
int length = (((int) s.charAt(0)) << 16) | ((int) s.charAt(1));
byte[] array = new byte[length];
boolean nextChar = true;
char c = 0;
int node = 0;
int runLength = 0;
int i = 2;
for (int ai=0; ai<length; ) {
// This part of the loop places the next byte into the local
// variable 'b' each time through the loop. It keeps the
// current character in 'c' and uses the boolean 'nextChar'
// to see if we've taken both bytes out of 'c' yet.
byte b;
if (nextChar) {
c = s.charAt(i++);
b = (byte) (c >> 8);
nextChar = false;
}
else {
b = (byte) (c & 0xFF);
nextChar = true;
}
// This part of the loop is a tiny state machine which handles
// the parsing of the run-length encoding. This would be simpler
// if we could look ahead, but we can't, so we use 'node' to
// move between three nodes in the state machine.
switch (node) {
case 0:
// Normal idle node
if (b == ESCAPE_BYTE) {
node = 1;
}
else {
array[ai++] = b;
}
break;
case 1:
// We have seen one ESCAPE_BYTE; we expect either a second
// one, or a run length and value.
if (b == ESCAPE_BYTE) {
array[ai++] = ESCAPE_BYTE;
node = 0;
}
else {
runLength = b;
// Interpret signed byte as unsigned
if (runLength < 0) runLength += 0x100;
node = 2;
}
break;
case 2:
// We have seen an ESCAPE_BYTE and length byte. We interpret
// the next byte as the value to be repeated.
for (int j=0; j<runLength; ++j) array[ai++] = b;
node = 0;
break;
}
}
if (node != 0)
throw new InternalError("Bad run-length encoded byte array");
if (i != s.length())
throw new InternalError("Excess data in RLE byte array string");
return array;
}
/**
* Format a String for representation in a source file. This includes
* breaking it into lines escaping characters using octal notation
* when necessary (control characters and double quotes).
*/
static final String formatForSource(String s) {
StringBuffer buffer = new StringBuffer();
for (int i=0; i<s.length();) {
if (i > 0) buffer.append("+\n");
buffer.append(" \"");
int count = 11;
while (i<s.length() && count<80) {
char c = s.charAt(i++);
if (c < '\u0020' || c == '"') {
// Represent control characters and the double quote
// using octal notation; otherwise the string we form
// won't compile, since Unicode escape sequences are
// processed before tokenization.
buffer.append('\\');
buffer.append(HEX_DIGIT[(c & 0700) >> 6]); // HEX_DIGIT works for octal
buffer.append(HEX_DIGIT[(c & 0070) >> 3]);
buffer.append(HEX_DIGIT[(c & 0007)]);
count += 4;
}
else if (c <= '\u007E') {
buffer.append(c);
count += 1;
}
else {
buffer.append("\\u");
buffer.append(HEX_DIGIT[(c & 0xF000) >> 12]);
buffer.append(HEX_DIGIT[(c & 0x0F00) >> 8]);
buffer.append(HEX_DIGIT[(c & 0x00F0) >> 4]);
buffer.append(HEX_DIGIT[(c & 0x000F)]);
count += 6;
}
}
buffer.append('"');
}
return buffer.toString();
}
static final char[] HEX_DIGIT = {'0','1','2','3','4','5','6','7',
'8','9','A','B','C','D','E','F'};
}